Infrared microscopy for the study of biological cell monolayers. I. Spectral effects of acetone and formalin fixation.
نویسندگان
چکیده
Infrared spectroscopy of biological cell monolayers grown on surfaces is a poorly developed field. This is unfortunate because these monolayers have potential as biological sensors. Here we have used infrared microscopy, in both transmission and transflection geometries, to study air-dried Vero cell monolayers. Using both methods allows one to distinguish sampling artefactual features from real sample spectral features. In transflection experiments, amide I/II absorption bands down-shift 9/4 cm(-1), respectively, relative to the corresponding bands in transmission experiments. In all other spectral regions no pronounced frequency differences in spectral bands in transmission and transflection experiments were observed. Transmission and transflection infrared microscopy were used to obtain infrared spectra for unfixed and acetone- or formalin-fixed Vero cell monolayers. Formalin-fixed monolayers display spectra that are very similar to that obtained using unfixed cells. However, acetone fixation leads to considerable spectral modifications. For unfixed and formalin-fixed monolayers, a distinct band is observed at 1740 cm(-1). This band is absent in spectra obtained using acetone-fixed monolayers. The 1740 cm(-1) band is associated with cellular ester lipids. In support of this hypothesis, two bands at 2925 and 2854 cm(-1) are also found to disappear upon acetone fixation. These bands are associated with C-H modes of the cellular lipids. Acetone fixation also leads to modification of protein amide I and II absorption bands. This may be expected as acetone causes coagulation of soluble cellular proteins. Other spectral changes associated with acetone or formalin fixation in the 1400-800 cm(-1) region are discussed.
منابع مشابه
Discrimination of Human Cell Lines by Infrared Spectroscopy and Mathematical Modeling
Variations in biochemical features are extensive among cells. Identification of marker that is specific for each cell is essential for following the differentiation of stem cell and metastatic growing. Fourier transform infrared spectroscopy (FTIR) as a biochemical analysis more focused on diagnosis of cancerous cells. In this study, commercially obtained cell lines such as Human ovarian carcin...
متن کاملDiscrimination of Human Cell Lines by Infrared Spectroscopy and Mathematical Modeling
Variations in biochemical features are extensive among cells. Identification of marker that is specific for each cell is essential for following the differentiation of stem cell and metastatic growing. Fourier transform infrared spectroscopy (FTIR) as a biochemical analysis more focused on diagnosis of cancerous cells. In this study, commercially obtained cell lines such as Human ovarian carcin...
متن کاملPredicting of Effective Dose as Biomarker for Cytotoxicity Using Partial Least Square-Fourier Transform Infrared Spectroscopy (PLS_FTIR)
Toxicity bioassays are important tools to determine biological effects of chemical agents on species. The questions remained on, what effects have been imposed on each of the different molecular site of cells by chemical exposure and how to find a pattern for chemical toxicity. To address the questions, HepG2 cell lines were exposed to the different concentrations of cisplatin for 24 hours to r...
متن کاملPredicting of Effective Dose as Biomarker for Cytotoxicity Using Partial Least Square-Fourier Transform Infrared Spectroscopy (PLS_FTIR)
Toxicity bioassays are important tools to determine biological effects of chemical agents on species. The questions remained on, what effects have been imposed on each of the different molecular site of cells by chemical exposure and how to find a pattern for chemical toxicity. To address the questions, HepG2 cell lines were exposed to the different concentrations of cisplatin for 24 hours to r...
متن کاملCytotoxity Assessment of Gold Nanoparticle-Chitosan Hydrogel Nanocomposite as an Efficient Support for Cell Immobilization: toward Sensing Application
Cell-based biosensors have become a research hotspot in biosensors and bioelectronics fields. The main feature of cell-based biosensors is the immobilization of living cell on the surface of transducers. Different types of polymers which are used as scaffolds for cell growth should be biocompatible and have reactive functional groups for further attachment of biomolecules. In this work, the cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biopolymers
دوره 89 11 شماره
صفحات -
تاریخ انتشار 2008